Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2215682121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648481

RESUMEN

Sustainability challenges related to food production arise from multiple nature-society interactions occurring over long time periods. Traditional methods of quantitative analysis do not represent long-term changes in the networks of system components, including institutions and knowledge that affect system behavior. Here, we develop an approach to study system structure and evolution by combining a qualitative framework that represents sustainability-relevant human, technological, and environmental components, and their interactions, mediated by knowledge and institutions, with network modeling that enables quantitative metrics. We use this approach to examine the water and food system in the Punjab province of the Indus River Basin in Pakistan, exploring how food production has been sustained, despite high population growth, periodic floods, and frequent political and economic disruptions. Using network models of five periods spanning 75 y (1947 to 2022), we examine how quantitative metrics of network structure relate to observed sustainability-relevant outcomes and how potential interventions in the system affect these quantitative metrics. We find that the persistent centrality of some and evolving centrality of other key nodes, coupled with the increasing number and length of pathways connecting them, are associated with sustaining food production in the system over time. Our assessment of potential interventions shows that regulating groundwater pumping and phasing out fossil fuels alters network pathways, and helps identify potential vulnerabilities for future food production.

2.
Environ Res ; 252(Pt 1): 118882, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582426

RESUMEN

The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (µg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.

4.
Sci Total Environ ; 919: 170863, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340842

RESUMEN

Upper Indus Basin (UIB), being climatologically sensitive and socio-economically important, has emerged as a hotspot for eco-hydrological studies. Permafrost, one of the essential components of the regional hydrological cycle with a critical role in microclimate, is also an important water resource in the UIB. Despite being an important component of the cryospheric system, permafrost is least studied in the UIB. In present study, we used stable oxygen and hydrogen isotopic composition in supra-permafrost water (SPFW) and aufeis along with precipitation, snowpack, glacier and other groundwaters to assess their variability and estimate their contribution to regional hydrology. The sources are evolving isotopically, depending on physiographic and hydrometeorological factors, with each source attaining different (if not distinct) isotopic signatures. The isotopic signatures (with different ranges) of sources help in estimating the contribution from these sources. A significant altitude gradient of δ18O is observed in stream water, SPFW and other groundwaters. Isotopic composition in SPFW is differentially modulated by fractionation, resulting in isotopic variability from the source waters. The results suggest snowmelt and/or glacier melt as the source of SPFW. To stream flow, SPFW is the dominant contributor (43 ± 18 %) at higher elevations (> 4300 m a.m.s.l.) in July, followed by snowmelt (26 ± 10 %). In September, SPFW contribution decreases (14 ± 8 %), but the contribution from other groundwaters becomes dominant (39 ± 11 %) to stream flow. The results indicate the significant role of seasonal thawing and freezing of active layer on the contribution from SPFW. This study highlights the significant role of permafrost in the hydrological system of the basin. The study also emphasizes the need to understand the dynamics of permafrost, taliks of various types (e.g., supra-permafrost subaerial talik) and active layer under changing climate to define the subsequent implications to regional hydrology, eco-hydrological systems and micro-climate of permafrost regions.

5.
Insect Biochem Mol Biol ; 164: 104045, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040266

RESUMEN

Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.


Asunto(s)
Antitoxinas , Insecticidas , Xenorhabdus , Animales , Insecticidas/metabolismo , Xenorhabdus/genética , Proteínas Bacterianas/metabolismo , Insectos/metabolismo , Antitoxinas/metabolismo , Péptidos/metabolismo
6.
Sci Total Environ ; 912: 168574, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38000757

RESUMEN

Groundwater of the Ravi River floodplain is particularly elevated in arsenic (As) on both sides of the Pakistan-India border. To understand this pattern, 14 sites were drilled to 12-30 m depth across floodplains and doabs of Pakistan after testing over 20,000 wells. Drill cuttings were collected at 1.5 m intervals, 132 of which were sand overlain by 77 intervals of clay and/or silt. Radiocarbon dating of clay indicates deposition of the aquifer sands tapped by wells 20-30 kyr ago. Most (85 %) of the sand samples were gray in color, indicating partial reduction to Fe(II) oxides, whereas most (92 %) of the clay and/or silt samples were orange. Associations between groundwater electrical conductivity, dissolved Fe, sulfate, and nitrate suggest that wells can be elevated (>10 µg/L) in As in the region due to either reductive dissolution of Fe oxides, evaporative concentration, or alkali desorption. In the Ravi floodplain, 47 % of 6445 wells tested contain >10 µg/L As compared to only 9 % of 14,165 tested wells in other floodplains and doabs. The As content of aquifer sands in the Ravi floodplain of Pakistan averages 4 ± 4 mg/kg (n = 66) and is higher than the average of 2 ± 2 mg/kg (n = 51) for aquifer sands outside the Ravi. Synchrotron spectroscopy and column-based speciation indicate predominance of As(V) over As(III) in both aquifer sands and groundwater. Whereas multiple processes may be responsible for elevated levels of As in groundwater across the region, spatial heterogeneity in groundwater As concentrations in the Ravi floodplain seems linked to variations in As concentrations in aquifer sands. Regulation by the solid phase may limit variations in groundwater As over time in response to natural and human-induced changes in hydrology. This means spatial heterogeneity could be taken advantage of to lower the exposure across the region with more testing and targeted drilling.

7.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469267

RESUMEN

Abstract Birds are among the best bio-indicators, which can guide us to recognize some of the main conservation concerns in ecosystems. Anthropogenic impacts such as deforestation, habitat degradation, modification of landscapes, and decreased quality of habitats are major threats to bird diversity. The present study was designed to detect anthropogenic causative agents that act on waterbird diversity in Tarbella Dam, Indus River, Pakistan. Waterbird censuses were carried out from March 2019 to February 2020 in multiple areas around the dam. A total of 2990 waterbirds representing 63 species were recorded. We detected the highest waterbird richness and diversity at Pehure whereas the highest density was recorded at Kabbal. Human activity impacts seemed to be the main factor determining the waterbird communities as waterbirds were negatively correlated with the greatest anthropogenic impacts. Waterbirds seem to respond rapidly to human disturbance.


Resumo As aves estão entre os melhores bioindicadores, o que pode nos orientar a reconhecer algumas das principais preocupações de conservação dos ecossistemas. Impactos antrópicos como desmatamento, degradação de habitat, modificação de paisagens e diminuição da qualidade dos habitats são as principais ameaças à diversidade de aves. O presente estudo foi desenhado para detectar agentes causadores antropogênicos que atuam na diversidade de aves aquáticas na Represa de Tarbella, rio Indus, Paquistão. Censos de aves aquáticas foram realizados de março de 2019 a fevereiro de 2020 em várias áreas ao redor da barragem. Um total de 2.990 aves aquáticas representando 63 espécies foi registrado. Detectamos a maior riqueza e diversidade de aves aquáticas em Pehure, enquanto a maior densidade foi registrada em Kabbal. Os impactos da atividade humana parecem ser o principal fator determinante das comunidades de aves aquáticas, uma vez que as aves aquáticas foram negativamente correlacionadas com os maiores impactos antrópicos. As aves aquáticas parecem responder rapidamente às perturbações humanas.

8.
Braz. j. biol ; 84: e251197, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1350305

RESUMEN

Abstract Birds are among the best bio-indicators, which can guide us to recognize some of the main conservation concerns in ecosystems. Anthropogenic impacts such as deforestation, habitat degradation, modification of landscapes, and decreased quality of habitats are major threats to bird diversity. The present study was designed to detect anthropogenic causative agents that act on waterbird diversity in Tarbella Dam, Indus River, Pakistan. Waterbird censuses were carried out from March 2019 to February 2020 in multiple areas around the dam. A total of 2990 waterbirds representing 63 species were recorded. We detected the highest waterbird richness and diversity at Pehure whereas the highest density was recorded at Kabbal. Human activity impacts seemed to be the main factor determining the waterbird communities as waterbirds were negatively correlated with the greatest anthropogenic impacts. Waterbirds seem to respond rapidly to human disturbance.


Resumo As aves estão entre os melhores bioindicadores, o que pode nos orientar a reconhecer algumas das principais preocupações de conservação dos ecossistemas. Impactos antrópicos como desmatamento, degradação de habitat, modificação de paisagens e diminuição da qualidade dos habitats são as principais ameaças à diversidade de aves. O presente estudo foi desenhado para detectar agentes causadores antropogênicos que atuam na diversidade de aves aquáticas na Represa de Tarbella, rio Indus, Paquistão. Censos de aves aquáticas foram realizados de março de 2019 a fevereiro de 2020 em várias áreas ao redor da barragem. Um total de 2.990 aves aquáticas representando 63 espécies foi registrado. Detectamos a maior riqueza e diversidade de aves aquáticas em Pehure, enquanto a maior densidade foi registrada em Kabbal. Os impactos da atividade humana parecem ser o principal fator determinante das comunidades de aves aquáticas, uma vez que as aves aquáticas foram negativamente correlacionadas com os maiores impactos antrópicos. As aves aquáticas parecem responder rapidamente às perturbações humanas.


Asunto(s)
Humanos , Ecosistema , Ríos , Pakistán , Conservación de los Recursos Naturales
9.
Chemosphere ; 349: 140970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114020

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Humanos , Agua/análisis , Ácidos Alcanesulfónicos/análisis , Pakistán , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Peces , Monitoreo del Ambiente
10.
Biotechnol Prog ; : e3415, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38043031

RESUMEN

In this work, we employ a recently developed biophysical technique that uses diethylpyrocarbonate (DEPC) covalent labeling and mass spectrometry for the identification of mAb binding patches to two multimodal cation exchange resins at different pH. This approach compares the labeling results obtained in the bound and unbound states to identify residues that are sterically shielded and thus located in the mAb binding domains. The results at pH 6 for one mAb (mAb B) indicated that while the complementarity determining region (CDR) had minimal interactions with both resins, the FC domain was actively involved in binding. In contrast, DEPC/MS data with another mAb (mAb C) indicated that both the CDR and FC domains were actively involved in binding. These results corroborated chromatographic retention data with these two mAbs and their fragments and helped to explain the significantly stronger retention of both the intact mAb C and its Fab fragment. In contrast, labeling results with mAb C at pH 7, indicated that only the CDR played a significant role in resin binding, again corroborating chromatographic data. The binding domains identified from the DEPC/MS experiments were also examined using protein surface hydrophobicity maps obtained using a recently developed sparse sampling molecular dynamics (MD) approach in concert with electrostatic potential maps. These results demonstrate that the DEPC covalent labeling/mass spectrometry technique can provide important information about the domain contributions of multidomain proteins such as monoclonal antibodies when interacting with multimodal resins over a range of pH conditions.

11.
Ecol Evol ; 13(5): e10106, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37223310

RESUMEN

Physiographic and hydrologic complexities play major role in determining the habitat suitability for river dolphins. However, dams and other water development structures alter hydrologic regimes that degrade habitat conditions. For the three extant species of obligate freshwater dolphins, namely: Amazon dolphin (Inia geoffrensis), Ganges dolphin (Platanista gangetica), and Indus dolphin (Platanista minor), the threat is high as dams and water-based infrastructure dotted throughout their distribution range impact dolphin populations by restricting their movement. But there is also evidence of localized increase in dolphin population in certain segments of habitats affected by such hydrologic alterations. Hence, the impacts of hydrologic alterations on dolphin distribution are not as binary as it seems. We aimed to ascertain the role of hydrologic and physiographic complexities in determining the distribution of the dolphins in their geographic ranges using density plot analysis and also to understand how hydrologic alterations in the rivers affect their distribution using a combination of density plot analysis and review of literature. The influence of some of the study variables such as distance to confluence and sinuosity was similar across species-for instance, all three dolphin species preferred slightly sinuous river segments and habitats near confluences. However, varying influences across species were observed for some other variables such as river order and river discharge. We assessed 147 cases of impacts of hydrological alterations on dolphin distribution by categorizing the reported impacts in nine broad types out of which habitat fragmentation accounted for the majority of the impacts (35%) followed by habitat reduction (24%). These endangered species of freshwater megafauna will experience further intensified pressures as more large-scale hydrologic modifications such as damming and diversion of rivers are underway. In this context, basin-scale water-based infrastructural development planning should take into consideration the salient ecological requirements of these species to ensure their long-term survival.

12.
Sci Total Environ ; 880: 163356, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030381

RESUMEN

This study focused on an integrated assessment of coastline change and its impacts on the deltaic sustainability of the Indus Delta, the world's fifth-largest delta. The increase in salinity and degradation of mangrove habitat was examined using multi-temporal Landsat satellite imagery from 1990 to 2020. The tasselled cap transformation indices, multi-statistical End Point Rate and Linear Regression were used to extract the shorelines rates. Mangrove cover area was estimated by applying the Random Forest clasification approach. Impacts of coastal erosion on mangroves and sea-water salinity were determined through the association between electrical conductivity and vegetation soil salinity index (VSSI). The accuracy of the analysis was evaluated using ground truth information obtained from field surveys and Fixed-Point Photography. Major findings of the analysis indicate that the North-West Karachi experienced accretion at an average rate of 7.28 ± 1.15 m/year, with medium salinity (VSSI<0.81) and increased mangrove cover, from 11.0 km2 area in 1990 to 14.5 km2 in 2020. However, the Western Delta has undergone massive erosion at a mean rate of -10.09 ± 1.61 m/year with obtrusive salinity (0.7 ≤ VSSI ≤ 1.2) and 70 km2 of mangrove cover loss. In the Middle West Delta and Middle East Delta erosion is observed at an average rate of -28.45 ± 0.55 m/year rate, with high obtrusive salinity (0.43 ≤ VSSI ≥ 1.32) and rapid mangroves cover loss (14 km2). The Eastern Delta was relatively stable and accelerating towards the sea with increasing mangrove cover (629 km2). Our analysis revealed that erosion, which occured due to reduced sediments flow linked to development of water infrastructures as well as climate change, have serious implications for the ecosystem. Future policy and action-plans should priotitise addressing vulnerabilities by integrate nature-based solutions for revival of the Delta.

13.
Environ Sci Pollut Res Int ; 30(23): 64517-64535, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37071365

RESUMEN

The study projects climate over the Upper Indus Basin (UIB), covering geographic areas in India, Pakistan, Afghanistan, and China, under the two Representative Concentration Pathways (RCPs), viz., RCP4.5 and RCP8.5 by the late twenty-first century using the best-fit climate model validated against the climate observations from eight meteorological stations. GFDL CM3 performed better than the other five evaluated climate models in simulating the climate of the UIB. The model bias was significantly reduced by the Aerts and Droogers statistical downscaling method, and the projections overall revealed a significant increase in temperature and a slight increase in precipitation across the UIB comprising of Jhelum, Chenab, and Indus sub-basins. According to RCP4.5 and RCP8.5, the temperature and precipitation in the Jhelum are projected to increase by 3 °C and 5.2 °C and 0.8% and 3.4% respectively by the late twenty-first century. The temperature and precipitation in the Chenab are projected to increase by 3.5 °C and 4.8 °C and 8% and 8.2% respectively by the late twenty-first century under the two scenarios. The temperature and precipitation in the Indus are projected to increase by 4.8 °C and 6.5 °C and 2.6% and 8.7% respectively by the late twenty-first century under RCP4.5 and RCP8.5 scenarios. The late twenty-first century projected climate would have significant impacts on various ecosystem services and products, irrigation and socio-hydrological regimes, and various dependent livelihoods. It is therefore hoped that the high-resolution climate projections would be useful for impact assessment studies to inform policymaking for climate action in the UIB.


Asunto(s)
Cambio Climático , Ecosistema , China , Predicción , Temperatura
14.
Sci Total Environ ; 878: 163143, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36996978

RESUMEN

Pakistan's agriculture faces water security challenges owing to insecure water supply and bad governance. The increasing food demand of the growing population and climate change vulnerability are future key threats to water sustainability. In this study, the current and future water demands as well as management strategies are evaluated for two climate change Representative Concentration Pathways (RCP2.6 and RCP8.5) for the Punjab and Sindh provinces in the Indus basin of Pakistan. The RCPs are assessed for the regional climate model REMO2015, which was found to be the best-fitting model for the current situation in a preceding model comparison using Taylor diagrams. The status quo water consumption (CWRarea) is estimated to 184 km3 yr-1, consisting of 76 % blue water (freshwater from surface water and groundwater), 16 % green water (precipitation), and 8 % grey water (required to leach out the salts from the root zone). The results of the future CWRarea indicates that RCP2.6 is more vulnerable than RCP8.5 in view of water consumption as the vegetation period of crops is reduced under RCP8.5. For both pathways (RCP2.6 and RCP8.5), CWRarea increases gradually in the midterm (2031-2070) and becomes extreme at the end of the long term (2061-2090). The future CWRarea increases up to +73 % under the RCP2.6 and up to +68 % in the RCP8.5 compared to the status quo. However, the increase in CWRarea could be restrained up to -3 % compared to the status quo through the adaptation of alternative cropping patterns. The results further show that the future CWRarea under climate change could be even decreased by up to -19 % through the collective implementation of improved irrigation technologies and optimized cropping patterns.

15.
Heliyon ; 9(1): e12659, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647356

RESUMEN

Run off river schemes are getting widespread importance as they are considered environmentally safe. However, number of studies and the consequent information regarding impacts of run off river schemes is very limited worldwide. Present study attempted to analyze impacts of Ghazi Barotha Hydropower Plant, which is a run off river scheme situated in Khyber Pakhtunkhwa province of Pakistan. This study attempted to analyze impacts of this run off river scheme on hydrological and ecological conditions of downstream areas. Data on river discharge, groundwater levels, agriculture area, vegetation and bare soil was utilized for this study. All data sets between the year 1990 till 2020 were analyzed. Hydrological impacts were analyzed through secondary data analysis, whereas ecological impacts were studied through remote sensing technique. Statistical methods were applied to further draw conclusions between hydrological and ecological interrelationships. Results showed that after functioning of Ghazi Barotha, there was 47% and 91% reduction of river discharge, in summer and winter seasons respectively. Groundwater level dropped by 50%. Agriculture area reduced by 1.69% and 9.11% during summer and winter respectively, whereas land under bare soil increased. River water diversion was considered to be responsible for groundwater reduction, as strong correlation was found between both. Agriculture land recovery, in post Ghazi Barotha period, was premised at intense groundwater mining, as groundwater level and agriculture area were significantly related (p < 0.05). Governments' groundwater development schemes, and a shift into motorized groundwater mining were major factors behind further groundwater exploitation in study area. This study came to the conclusion that Ghazi Barotha Hydropower Plant had impacted flow regime of Indus River, as well as groundwater levels and land use of downstream area along the river. These effects were triggered by inappropriate compensatory measures and uncontrolled water resource exploitation.

16.
Environ Sci Pollut Res Int ; 30(8): 20631-20649, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36255575

RESUMEN

Recent studies have endorsed that surface water chemical composition in the Himalayas is impacted by climate change-induced accelerated melting of glaciers. Chemical weathering dynamics in the Ladakh region is poorly understood, due to unavailability of in situ dataset. The aim of the present study is to investigate how the two distinct catchments (Lato and Stok) drive the meltwater chemistry of the Indus River and its tributary, in the Western Himalayas. Water samples were collected from two glaciated catchments (Lato and Stok), Chabe Nama (tributary) and the Indus River in Ladakh. The mildly alkaline pH (range 7.3-8.5) and fluctuating ionic trend of the meltwater samples reflected the distinct geology and weathering patterns of the Upper Indus Basin (UIB). Gibbs plot and mixing diagram revealed rock weathering outweighed evaporation and precipitation. The strong associations between Ca2+-HCO3-, Mg2+-HCO3-, Ca2+-Mg2+, Na+-HCO3-, and Mg2+-Na+ demonstrated carbonate rock weathering contributed to the major ion influx. Principal component analysis (PCA) marked carbonate and silicates as the most abundant minerals respectively. Chemical weathering patterns were predominantly controlled by percentage of glacierized area and basin runoff. Thus, Lato with the larger glacierized area (~ 25%) and higher runoff contributed low TDS, HCO3-, Ca2+, and Na+ and exhibited higher chemical weathering, whereas lower chemical weathering was evinced at Stok with the smaller glacierized area (~ 5%). In contrast, the carbonate weathering rate (CWR) of larger glacierized catchments (Lato) exhibits higher average value of 15.7 t/km2/year as compared to smaller glacierized catchment (Stok) with lower average value 6.69 t/km2/year. However, CWR is high in both the catchments compared to silicate weathering rate (SWR). For the first time, in situ datasets for stream water chemical characteristics have been generated for Lato and Stok glaciated catchments in Ladakh, to facilitate healthy ecosystems and livelihoods in the UIB.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Ecosistema , Calidad del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Agua/análisis , Carbonatos/análisis
17.
Sci Total Environ ; 857(Pt 2): 159408, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36243075

RESUMEN

The elevated concentrations of arsenic in natural water are one of the major environmental threats to human health. However, the existing characteristics, controlling mechanisms, and associated risks of arsenic in natural waters in the Indus River Basin (IRB), Pakistan, are yet to be unequivocally understood. In this study, a total of 203 samples of surface water (SW), shallow groundwater (SGW), and deep groundwater (DGW) were collected from the IRB to assess the geochemical characteristics of arsenic and its associated health risks, as all three kinds of waters are the main sources of drinking and domestic usage. The results revealed that the arsenic concentrations in the SW, SGW, and DGW were in the ranges of 1.1-26.45, 1.05-44.44, and 0.67-41.09 µg L-1, respectively. Furthermore, the predominance of As (V) (97 %) over As(III) (3 %) confirmed that the desorption of As in oxidizing environments with elevated pH and Eh is the controlling mechanism. The hazard quotient of 11-45 % and 20-60 % samples and cancer risk of 26-64 % and 26-68 % samples indicated high health risks for the adults and children, respectively, suggesting an immense need for appropriate measures of reducing natural water arsenic concentrations in IRB from the human health perspectives.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Arsénico/análisis , Ríos , Monitoreo del Ambiente/métodos , Pakistán , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Medición de Riesgo , Agua
18.
Environ Geochem Health ; 45(5): 2511-2531, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36006578

RESUMEN

The present study is aimed to investigate the hydrochemical characteristics, spatial distribution and suitability of groundwater for drinking and irrigation purposes along the Indus Suture Zone (ISZ), north Pakistan. Physicochemical parameters and hazardous trace elements (HTEs) like Cd, Co, Cu and Mn were determined following standard methods. The mean and median concentrations were found below the World Health Organization (WHO) drinking water guidelines values. Hydrochemical results indicate that groundwater sources were mainly attributed to rock-water interaction category. Piper diagram shows that most of the groundwater samples fall in Ca-HCO3─ class presenting weak-alkaline proportion type. The drinking water quality index (DWQI) ranking was categorized as good to excellent, indicating the overall quality of the groundwater may pose no health hazard concern. Based on irrigation WQI (SAR, Na%, MAR, KR), the groundwater was found fit for irrigation except SAR whereas 36% of the groundwater samples fall within the poor class. The total HI values through dermal contact exceeded the safe non-carcinogenic threshold of HI = 1. Therefore, there is required an effective groundwater monitoring and management facility in the study area to safeguard residents from various illnesses associated with varying HTEs concentrations in drinking water. The major response actions needed for groundwater bodies restoration are including the installation of a continuous groundwater monitoring network and control of agricultural fertilizers that seems to be the most effective and tangible for immediate action.


Asunto(s)
Agua Potable , Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Pakistán , Calidad del Agua , Suturas , Contaminantes Químicos del Agua/análisis
19.
Front Genet ; 14: 1303628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38384360

RESUMEN

Introduction: The Koraga tribe are an isolated endogamous tribal group found in the southwest coastal region of India. The Koraga language shares inherited grammatical features with North Dravidian languages. To seek a possible genetic basis for this exceptionality and understand the maternal lineage pattern, we have aimed to reconstruct the inter-population and intra-population relationships of the Koraga tribal population by using mtDNA markers for the hypervariable regions along with a partial coding region sequence analysis. Methods and Results: Amongst the 96 individuals studied, we observe 11 haplogroups, of which a few are shared and others are unique to the clans Soppu, Onti and Kuntu. In addition to several deep rooted Indian-specific lineages of macrohaplogroups M and U, we observe a high frequency of the U1 lineage (∼38%), unique to the Koraga. A Bayesian analysis of the U1 clade shows that the Koraga tribe share their maternal lineage with ancestral populations of the Caucasus at the cusp of the Last Glacial Maximum. Discussion: Our study suggests that the U1 lineage found in the Indian subcontinent represents a remnant of a post-glacial dispersal. The presence of West Asian U1 when viewed along with historical linguistics leads us to hypothesise that Koraga represents a mother tongue retained by a vanquished population group that fled southward at the demise of the Indus civilisation as opposed to a father tongue, associated with a particular paternal lineage.

20.
Braz. j. biol ; 83: 1-10, 2023. map, ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468846

RESUMEN

In South and South East Asia three genera of fish species i.e. Tor, Neolissochilus and Naziritor are commonly known as Mahseer with at least 47 species. Among these 23 belongs to genus Tor, 22 to Neolissochilus and one to Naziritor i.e. Naziritor zhobensis. Recently another species added to genus Naziritor is Naziritor chelynoides in India. Among Tor species Tor putitora (Hamilton) is the most widely distributed Mahseer in Pakistan and other countries of the Indian subcontinent. However, based alone on morphological characters some authors identify the Pakistani counterparts as Tor macrolepis (Heckel), (a species presumed to be found exclusively in the Indus River system) distinct from Tor putitora (a species found in Ganga Brahmaputra River system). In order to resolve this taxonomic ambiguity, present study carried out meristic and morphometric measurements of Mahseer collected from a total of 11 water bodies of Pakistan. Ratios between the morphometric characters were calculated and statistically analyzed using t-test and correlation coefficient. Two species identified as Tor putitora and Naziritor zhobensis were the sole Mahseer inhabitants of Indus system in Pakistan. Tor putitora occurred at all surveyed sites while Nazirtor zhobensis had a distribution range from river Zhob to tributaries of river Gomal the right bank tributaries of River Indus. The study corroborates that there are no unequivocal morphological synapomorphies in any existing populations of both species. The study further demonstrates that head length, a character frequently used in Mahseer taxonomy, is not a good measure for species identification. Finally the present study establishes that Naziritor zhobensis still exists in the water bodies of Pakistan and that golden Mahseer occurring in Indus riverine system of Pakistan is Tor putitora.


No sul e sudeste da Ásia, três gêneros de espécies de peixes, ou seja, Tor, Neolissochilus e Naziritor, são comumente conhecidos como Mahseer com pelo menos 47 espécies. Entre estas, 23 pertencem ao gênero Tor, 22 a Neolissochilus e um a Naziritor, ou seja, Naziritor zhobensis. Recentemente, outra espécie adicionada ao gênero Naziritor é Naziritor chelynoides na Índia. Entre as espécies de Tor, Tor putitora (Hamilton) é o Mahseer mais amplamente distribuído no Paquistão e em outros países do subcontinente indiano. No entanto, com base apenas em caracteres morfológicos, alguns autores identificam as contrapartes paquistanesas como Tor macrolepis (Heckel) (uma espécie que se presume ser encontrada exclusivamente no sistema do rio Indo), distinta de Tor putitora (uma espécie encontrada no sistema do rio Ganga Brahmaputra). A fim de resolver essas ambiguidades taxonômicas, o presente estudo realizou medidas merísticas e morfométricas de Mahseer coletadas em um total de 11 corpos d’água do Paquistão. As razões entre os caracteres morfométricos foram calculadas e analisadas estatisticamente usando o teste t e o coeficiente de correlação. Duas espécies identificadas como Tor putitora e Naziritor zhobensis foram os únicos habitantes Mahseer do sistema fluvial Indo no Paquistão. Tor putitora ocorreu em todos os locais pesquisados, enquanto Nazirtor zhobensis tinha uma faixa de distribuição do rio Zhob aos afluentes do rio Gomal, afluentes da margem direita do rio Indo. O estudo corrobora que não há sinapomorfias morfológicas inequívocas em nenhuma das populações existentes de ambas as espécies. O estudo demonstra ainda que o comprimento da cabeça, um caractere frequentemente usado na taxonomia de Mahseer, não é boa medida para identificação das espécies. Finalmente, o presente estudo estabelece que Naziritor zhobensis ainda existe nos corpos d'água do Paquistão e que o Mahseer dourado ocorrendo no sistema fluvial Indo do Paquistão é Tor putitora.


Asunto(s)
Animales , Cyprinidae/anatomía & histología , Cyprinidae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...